User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
start [2024/11/26 18:44] – created bradstart [2024/12/13 18:26] (current) brad
Line 1: Line 1:
-====== Large Language Model (LLM) Agents ======+===== AgentWiki =====
  
-Welcome to the **LLM Agents Wiki**, your comprehensive resource for understanding and leveraging Large Language Model Agents in the realm of artificial intelligenceDive into the cutting-edge developments, explore various types and design patterns, and discover the libraries and tools that empower these intelligent systems to perform autonomously across diverse applications.+Welcome to the **AgentWiki**, comprehensive resource for understanding and leveraging Large Language Models (LLMs) for agent applications 
 +Catch up on the latest developments, explore various architectures and design patterns, and discover the libraries and tools that empower these intelligent systems to perform autonomously across diverse domains.
  
------+==== Introduction ====
  
-===== Introduction =====+🤖 Large Language Model (LLM) Agents are sophisticated AI systems that utilize large-scale neural language models to perform tasks autonomously.   
 +By comprehending natural language, reasoning through complex problems, and interacting with external tools and environments, LLM Agents represent a significant advancement in artificial intelligence.   
 +They are capable of planning, executing, and adapting their actions based on given objectives and feedback from their environment.
  
-**Large Language Model (LLM) Agents** are AI systems that utilize large language models to perform tasks autonomously. By understanding natural language, reasoning through complex problems, and interacting with external tools and environments, LLM Agents represent a significant advancement in artificial intelligence. They are capable of planning, executing, and adapting their actions based on given objectives and feedback from their environment.+==== Agent System Overview ====
  
------+🧠 In an LLM-powered autonomous agent system, the LLM functions as the agent's central processing unit, complemented by several key components:
  
-===== Key Features of LLM Agents =====+  * **[[planning|Planning]]** 
 +    * Task Decomposition   
 +    * Self-Reflection  
  
-  * **Reasoning and Planning:** LLM Agents analyze complex tasks, devise strategies, and plan sequences of actions to achieve specific goals. +  * **[[memory|Memory]]** 
-  **Tool Utilization:** They interact with external tools, APIs, databases, and services to extend their capabilities beyond text generation, such as performing web searches, executing code, or manipulating data. +    Hierarchical Memory Systems   
-  * **Memory and Context Management:** By maintaining context over interactions, LLM Agents can reference previous information and maintain coherent long-term objectives. +    Efficient Retrieval Mechanisms  
-  **Natural Language Understanding:** Advanced language comprehension allows LLM Agents to interpret and generate human-like text, making them effective for communication and instruction following. +
-  * **Autonomy and Adaptability:** LLM Agents operate independently, making decisions and adapting to new information or changes in their environment.+
  
------+  * **[[tool_use|Tool Use]]** 
 +    * External API Integration   
 +    * Dynamic Tool Selection  
  
-===== Types of LLM Agents =====+  * **[[structured_outputs|Structured Outputs]]** 
 +    * Grammars   
 +    * Constrained Outputs  
  
-==== Chain-of-Thought (CoT) Reasoning ==== +🚀 These components enable the agent to:  
-An approach where the LLM generates a step-by-step reasoning process, enhancing its problem-solving capabilities by making intermediate reasoning steps explicit.+
  
-==== ReAct (Reasoning and Acting) ==== +  * **Plan** complex tasks through decomposition and strategic reasoning.   
-A framework that combines reasoning traces with actions, allowing the agent to reason about tasks and interact with external tools or environments in an interleaved manner.+  * **Remember** past interactions using advanced memory architectures.   
 +  * **Utilize Tools** to extend capabilities beyond text generation.
  
-==== AutoGPT ==== +==== Key Features of LLM Agents ====
-An experimental open-source application demonstrating how LLMs like GPT-4 can autonomously achieve user-defined goals by iteratively planning, executing, and learning from actions.+
  
-==== BabyAGI ==== +🌀 **[[advanced_reasoning_planning|Advanced Reasoning and Planning]]**:   
-A simplified artificial general intelligence model that uses an LLM to createprioritize, and execute tasks, aiming to autonomously achieve objectives.+Employ sophisticated reasoning strategies to analyze complex tasksdevise multi-step plans, and sequence actions to achieve specific goals.
  
-==== AgentGPT ==== +🔧 **[[tool_utilization|Tool Utilization and API Interaction]]**:   
-A platform enabling users to deploy autonomous AI agents that can carry out tasks in a web-based environmentcombining planning and execution capabilities.+Interface with external tools, APIs, databases, and services to perform actions such as web searchescode execution, and data manipulation.
  
-==== Plan-and-Execute Agents ==== +📚 **[[hierarchical_memory|Hierarchical Memory and Context Management]]**:   
-Agents that first plan a sequence of actions to achieve a goal and then execute those actionsoften revising the plan based on the outcomes of each step.+Use multi-level memory architectures to maintain extensive context over interactionsenabling long-term coherence and adaptability.
  
-==== Conversational Agents ==== +💡 **[[natural_language_understanding|Natural Language Understanding and Generation]]**:   
-Specialized in dialogue, these agents understand and generate human-like conversational responsescommonly used in customer support or virtual assistants.+Interpret and generate human-like textfacilitating effective communication and instruction following.
  
-==== Tool-Using Agents ==== +🔄 **[[autonomy|Autonomy and Adaptive Behavior]]**:   
-Agents capable of utilizing external tools or APIs (e.g.calculators, search engines, databases) to augment their capabilities and provide accurate or up-to-date information.+Operate independentlymaking informed decisions and adapting to new information or changes in their environment through iterative learning processes.
  
------+==== Workflows ====
  
-===== Design Patterns for LLM Agents =====+Workflows in LLM Agent systems streamline the design, implementation, and orchestration of complex tasks by structuring multi-step processes for optimal performance.  
  
-  * **Prompt Chaining:** Structuring complex tasks into a series of prompts that guide the LLM through a multi-step process. +🌊 **Key Workflow Tools**   
-  * **Reinforcement Learning from Human Feedback (RLHF):** Training LLMs using human feedback to improve responses and align them with desired outcomes. +  * **[[flowise|Flowise]]**: A visual programming interface for designing agent workflows.   
-  * **Agent Loop (Perception-Thought-Action Cycle):** An iterative process where the agent perceives inputs, thinks (reasoning/planning), and acts (produces outputs or takes actions). +  * **[[promptflow|PromptFlow]]**: A framework for defining and testing prompt sequences in a systematic manner.  
-  * **Context Window Management:** Techniques for managing the limited context window of LLMs, such as summarizing past interactions or retrieving relevant information. +
-  * **Tool Integration Patterns:** Designing interfaces that allow the LLM to interact with external tools through well-defined APIs or action schemas. +
-  * **Memory Augmentation:** Implementing mechanisms for the agent to store and retrieve information beyond the LLM's context window, such as external memory databases. +
-  * **Modular Architecture:** Separating the agent's functionalities into modules (e.g., planning, memory, execution) to enhance maintainability and scalability.+
  
------+These tools enhance the modularity and reusability of task definitions, enabling seamless experimentation and deployment.
  
-===== Libraries and Frameworks =====+==== Components of LLM Agents ====
  
-  * **LangChain:** A framework for developing applications powered by language models, providing tools for prompt chaining, memory management, and agent development. +=== Planning ===
-  * **LlamaIndex (GPT Index):** A toolkit for connecting LLMs with external data sources and knowledge bases. +
-  * **Hugging Face Transformers:** A library offering a wide range of pre-trained models and tools for natural language processing tasks, facilitating the development of LLM Agents. +
-  * **OpenAI API:** Provides access to advanced language models like GPT-4, enabling the integration of LLM capabilities into custom applications and agents. +
-  * **Microsoft Guidance:** A library for controlling LLM generation, allowing developers to specify desired behavior and constraints. +
-  * **AutoGPT and BabyAGI Implementations:** Open-source projects demonstrating autonomous agents built on top of LLMs, serving as references for building similar systems. +
-  * **Haystack:** An open-source framework for building search systems that combine LLMs with traditional search methods, useful for agents requiring information retrieval capabilities.+
  
------+🧩 Planning involves the strategic breakdown of complex tasks into manageable sub-tasks, devising algorithms, and sequencing actions based on logical reasoning and predicted outcomes.
  
-===== Applications of LLM Agents =====+== Task Decomposition ==
  
-  * **Autonomous Task Execution:** Performing tasks such as data analysis, content generation, scheduling, and automation of workflows without human intervention. +🌳 **[[chain_of_thought|Chain-of-Thought (CoT) Reasoning]]**   
-  * **Customer Support and Virtual Assistants:** Providing personalized assistance, answering queries, and engaging in natural language conversations with users. +🌲 **[[tree_of_thoughts|Tree of Thoughts]]**   
-  * **Research Assistance:** Assisting researchers by summarizing papers, generating hypotheses, or exploring literature. +⚙️ **[[llm_with_planning|LLM+P (LLM with Classical Planning)]]**
-  * **Education and Tutoring:** Offering personalized learning experiences, explanations, and educational content tailored to individual needs. +
-  * **Content Creation:** Generating articles, reports, creative writing, or marketing materials based on user input or autonomous exploration. +
-  * **Software Development Assistance:** Helping with code generation, debugging, documentation, and providing suggestions to developers. +
-  * **Data Retrieval and Processing:** Collecting, processing, and analyzing data from various sources to provide insights or support decision-making.+
  
------+== Self-Reflection ==
  
-===== Recent Developments =====+🔍 **[[react_framework|ReAct (Reasoning and Acting)]]**   
 +🔄 **[[reflexion_framework|Reflexion Framework]]**   
 +🪞 **[[chain_of_hindsight|Chain of Hindsight (CoH)]]**   
 +📉 **[[algorithm_distillation|Algorithm Distillation (AD)]]**
  
-The field of LLM Agents is rapidly evolving, with significant advancements including:+=== Memory ===
  
-  * **Enhanced Reasoning Abilities:** Improvements in chain-of-thought prompting and reasoning strategies have led to better problem-solving capabilities. +📦 Memory mechanisms allow agents to retain, retrieve, and utilize information over extended periods, significantly enhancing their ability to maintain context, learn from past experiences, and build upon accumulated knowledge.
-  * **Tool Use Integration:** LLMs are increasingly able to interact with external tools, expanding functionality beyond text-based outputs. +
-  * **Memory and Retrieval Augmented Models:** Incorporation of retrieval mechanisms allows agents to access relevant information from large datasets or knowledge bases as needed. +
-  * **Ethical and Safe AI Practices:** Ongoing efforts ensure that LLM Agents operate within ethical guidelinesavoiding biases and harmful outputs. +
-  * **Open-Source Agent Frameworks:** Projects like AutoGPT and BabyAGI accelerate experimentation and development in autonomous LLM Agents.+
  
------+== Hierarchical Memory Systems ==
  
-===== Getting Started =====+🕒 **[[sensory_memory|Sensory Memory]]**   
 +⏳ **[[short_term_memory|Short-Term Memory (Working Memory)]]**   
 +📜 **[[long_term_memory|Long-Term Memory (Persistent Memory)]]**   
 +    * 📂 **[[explicit_memory|Explicit/Declarative Memory]]**   
 +    * 🤫 **[[implicit_memory|Implicit/Procedural Memory]]**
  
-Embark on your journey with LLM Agents by exploring the following resources:+== Efficient Retrieval Mechanisms ==
  
-  * **[[Introduction to LLM Agents|Introduction to LLM Agents]]:** An overview of the architecture and components of LLM-powered agent applications. +🔎 **[[maximum_inner_product_search|Maximum Inner Product Search (MIPS)]]**   
-  * **[[LangChain Documentation|LangChain Documentation]]:** Guides and tutorials on using LangChain for developing LLM applications and agents. +    🧮 **[[locality_sensitive_hashing|Locality-Sensitive Hashing (LSH)]]**   
-  * **[[OpenAI API Reference|OpenAI API Reference]]:** Documentation and examples for integrating OpenAI's language models into your projects. +    📊 **[[approximate_nearest_neighbors|Approximate Nearest Neighbors (ANNOY)]]**   
-  * **[[AutoGPT GitHub Repository|AutoGPT GitHub Repository]]:** Explore the code and documentation of AutoGPT to understand autonomous agent implementations. +    🗺️ **[[hnsw_graphs|Hierarchical Navigable Small World (HNSW) Graphs]]**   
-  * **[[ReAct Paper|ReAct: Synergizing Reasoning and Acting in Language Models]]:** A research paper introducing the ReAct framework. +    🔍 **[[faiss|Facebook AI Similarity Search (FAISS)]]**   
-  * **[[Hugging Face Transformers|Hugging Face Transformers]]:** Learn how to use pre-trained models and fine-tune them for your specific needs.+    📈 **[[scann|Scalable Nearest Neighbors (ScaNN)]]**
  
------+=== Tool Use ===
  
-===== Join the Community =====+🔧 Tool use extends the agent's functionality by enabling interaction with external systems, APIs, and tools, allowing the agent to perform actions beyond its inherent capabilities and access up-to-date information.
  
-Stay updated with the latest trendsresearch, and developments in the field of LLM Agents by joining our community:+  * 🧰 **[[mrkl_systems|MRKL Systems (Modular ReasoningKnowledge, and Language)]]**   
 +  * 🛠️ **[[tool_augmented_language_models|Tool-Augmented Language Models (TALM)]]**   
 +  * 🤖 **[[toolformer|Toolformer]]**
  
-  * **Discussion Forums:** Engage with practitioners, share knowledge, and collaborate on projects. +== API Integration ==
-  * **Contribute to Open-Source Projects:** Participate in the development of tools and frameworks related to LLM Agents. +
-  * **Attend Workshops and Webinars:** Expand your knowledge through events focused on LLM technologies and applications.+
  
------+🔗 **[[openai_function_calling|OpenAI Function Calling and ChatGPT Plugins]]**   
 +🔗 **[[hugginggpt|HuggingGPT]]**   
 +🗂️ **[[api_bank_benchmark|API-Bank Benchmark]]**
  
-**Explore. Learn. Innovate.** Unlock the transformative potential of Large Language Model Agents and be at the forefront of the AI revolution.+==== Types of LLM Agents ==== 
 + 
 +🧠 **[[chain_of_thought_agents|Chain-of-Thought Agents]]**   
 +🔄 **[[react_agents|ReAct Agents]]**   
 +🤖 **[[autonomous_agents|Autonomous Agents]]**   
 +    * 🤖 **[[autogpt|AutoGPT]]**   
 +    * 🤖 **[[babyagi|BabyAGI]]**   
 +    * 🤖 **[[agentgpt|AgentGPT]]**   
 +📋 **[[plan_and_execute_agents|Plan-and-Execute Agents]]**   
 +💬 **[[conversational_agents|Conversational Agents]]**   
 +🔧 **[[tool_using_agents|Tool-Using Agents]]** 
 + 
 +==== Design Patterns for LLM Agents ==== 
 + 
 +🔗 **[[prompt_chaining|Prompt Chaining and Orchestration]]**   
 +📈 **[[rlhf|Reinforcement Learning from Human Feedback (RLHF)]]**   
 +🔄 **[[agent_loop|Agent Loop (Perception-Thought-Action Cycle)]]**   
 +🗂️ **[[context_window_management|Context Window Management]]**   
 +🔧 **[[tool_integration_patterns|Tool Integration Patterns]]**   
 +📂 **[[memory_augmentation_strategies|Memory Augmentation Strategies]]**   
 +🏗️ **[[modular_architectures|Modular and Layered Architectures]]** 
 + 
 +==== Libraries and Frameworks ==== 
 + 
 +Explore a range of tools and platforms for developing LLM agents: 
 + 
 +**Frameworks & Platforms** 
 + 
 +⚙️ **[[agent_protocol|Agent Protocol]]**   
 +🤖 **[[anthropic_context_protocol|Anthropic Model Context Protocol]]**   
 +💻 **[[chatdev|ChatDev]]**   
 +⚡ **[[bolt_new|Bolt.new]]**   
 +🔗 **[[flowise|Flowise]]**   
 +📋 **[[instructor_framework|Instructor]]**   
 +🔎 **[[llamaindex|LlamaIndex]]**   
 +🧠 **[[autogpt|AutoGPT]]**   
 +🤖 **[[babyagi|BabyAGI]]**   
 +🔗 **[[langroid|Langroid]]**   
 +📊 **[[microsoft_graphrag|Microsoft GraphRAG]]**   
 +🌟 **[[lite_llm|LiteLLM]]**
  
start.1732646662.txt.gz · Last modified: 2024/11/26 18:44 by brad