User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
start [2024/11/26 19:17] – [Large Language Model (LLM) Agents] bradstart [2024/12/13 18:26] (current) brad
Line 1: Line 1:
-====== Large Language Model (LLM) Agents ======+===== AgentWiki =====
  
-Welcome to the **LLM Agents Wiki**, a wikipedia for understanding and leveraging Large Language Model AgentsDive into the cutting-edge developments, explore various types and design patterns, and discover the libraries and tools that empower these intelligent systems to perform autonomously across diverse applications.+Welcome to the **AgentWiki**, a comprehensive resource for understanding and leveraging Large Language Models (LLMs) for agent applications 
 +Catch up on the latest developments, explore various architectures and design patterns, and discover the libraries and tools that empower these intelligent systems to perform autonomously across diverse domains.
  
------+==== Introduction ====
  
-===== Introduction =====+🤖 Large Language Model (LLM) Agents are sophisticated AI systems that utilize large-scale neural language models to perform tasks autonomously.   
 +By comprehending natural language, reasoning through complex problems, and interacting with external tools and environments, LLM Agents represent a significant advancement in artificial intelligence.   
 +They are capable of planning, executing, and adapting their actions based on given objectives and feedback from their environment.
  
-**Large Language Model (LLM) Agents** are AI systems that utilize large language models to perform tasks autonomously. By understanding natural language, reasoning through complex problems, and interacting with external tools and environments, LLM Agents represent a significant advancement in artificial intelligence. They are capable of planning, executing, and adapting their actions based on given objectives and feedback from their environment.+==== Agent System Overview ====
  
------+🧠 In an LLM-powered autonomous agent system, the LLM functions as the agent's central processing unit, complemented by several key components:
  
-===== Key Features of LLM Agents =====+  * **[[planning|Planning]]** 
 +    * Task Decomposition   
 +    * Self-Reflection  
  
-  * **Reasoning and Planning:** LLM Agents analyze complex tasks, devise strategies, and plan sequences of actions to achieve specific goals. +  * **[[memory|Memory]]** 
-  **Tool Utilization:** They interact with external tools, APIs, databases, and services to extend their capabilities beyond text generation, such as performing web searches, executing code, or manipulating data. +    Hierarchical Memory Systems   
-  * **Memory and Context Management:** By maintaining context over interactions, LLM Agents can reference previous information and maintain coherent long-term objectives. +    Efficient Retrieval Mechanisms  
-  **Natural Language Understanding:** Advanced language comprehension allows LLM Agents to interpret and generate human-like text, making them effective for communication and instruction following. +
-  * **Autonomy and Adaptability:** LLM Agents operate independently, making decisions and adapting to new information or changes in their environment.+
  
------+  * **[[tool_use|Tool Use]]** 
 +    * External API Integration   
 +    * Dynamic Tool Selection  
  
-===== Types of LLM Agents =====+  * **[[structured_outputs|Structured Outputs]]** 
 +    * Grammars   
 +    * Constrained Outputs  
  
-==== Chain-of-Thought (CoT) Reasoning ==== +🚀 These components enable the agent to:  
-An approach where the LLM generates a step-by-step reasoning process, enhancing its problem-solving capabilities by making intermediate reasoning steps explicit.+
  
-==== ReAct (Reasoning and Acting) ==== +  * **Plan** complex tasks through decomposition and strategic reasoning.   
-A framework that combines reasoning traces with actions, allowing the agent to reason about tasks and interact with external tools or environments in an interleaved manner.+  * **Remember** past interactions using advanced memory architectures.   
 +  * **Utilize Tools** to extend capabilities beyond text generation.
  
-==== AutoGPT ==== +==== Key Features of LLM Agents ====
-An experimental open-source application demonstrating how LLMs like GPT-4 can autonomously achieve user-defined goals by iteratively planning, executing, and learning from actions.+
  
-==== BabyAGI ==== +🌀 **[[advanced_reasoning_planning|Advanced Reasoning and Planning]]**:   
-A simplified artificial general intelligence model that uses an LLM to createprioritize, and execute tasks, aiming to autonomously achieve objectives.+Employ sophisticated reasoning strategies to analyze complex tasksdevise multi-step plans, and sequence actions to achieve specific goals.
  
-==== AgentGPT ==== +🔧 **[[tool_utilization|Tool Utilization and API Interaction]]**:   
-A platform enabling users to deploy autonomous AI agents that can carry out tasks in a web-based environmentcombining planning and execution capabilities.+Interface with external tools, APIs, databases, and services to perform actions such as web searchescode execution, and data manipulation.
  
-==== Plan-and-Execute Agents ==== +📚 **[[hierarchical_memory|Hierarchical Memory and Context Management]]**:   
-Agents that first plan a sequence of actions to achieve a goal and then execute those actionsoften revising the plan based on the outcomes of each step.+Use multi-level memory architectures to maintain extensive context over interactionsenabling long-term coherence and adaptability.
  
-==== Conversational Agents ==== +💡 **[[natural_language_understanding|Natural Language Understanding and Generation]]**:   
-Specialized in dialogue, these agents understand and generate human-like conversational responsescommonly used in customer support or virtual assistants.+Interpret and generate human-like textfacilitating effective communication and instruction following.
  
-==== Tool-Using Agents ==== +🔄 **[[autonomy|Autonomy and Adaptive Behavior]]**:   
-Agents capable of utilizing external tools or APIs (e.g.calculators, search engines, databases) to augment their capabilities and provide accurate or up-to-date information.+Operate independentlymaking informed decisions and adapting to new information or changes in their environment through iterative learning processes.
  
------+==== Workflows ====
  
-===== Design Patterns for LLM Agents =====+Workflows in LLM Agent systems streamline the design, implementation, and orchestration of complex tasks by structuring multi-step processes for optimal performance.  
  
-  * **Prompt Chaining:** Structuring complex tasks into a series of prompts that guide the LLM through a multi-step process. +🌊 **Key Workflow Tools**   
-  * **Reinforcement Learning from Human Feedback (RLHF):** Training LLMs using human feedback to improve responses and align them with desired outcomes. +  * **[[flowise|Flowise]]**: A visual programming interface for designing agent workflows.   
-  * **Agent Loop (Perception-Thought-Action Cycle):** An iterative process where the agent perceives inputs, thinks (reasoning/planning), and acts (produces outputs or takes actions). +  * **[[promptflow|PromptFlow]]**: A framework for defining and testing prompt sequences in a systematic manner.  
-  * **Context Window Management:** Techniques for managing the limited context window of LLMs, such as summarizing past interactions or retrieving relevant information. +
-  * **Tool Integration Patterns:** Designing interfaces that allow the LLM to interact with external tools through well-defined APIs or action schemas. +
-  * **Memory Augmentation:** Implementing mechanisms for the agent to store and retrieve information beyond the LLM's context window, such as external memory databases. +
-  * **Modular Architecture:** Separating the agent's functionalities into modules (e.g., planning, memory, execution) to enhance maintainability and scalability.+
  
------+These tools enhance the modularity and reusability of task definitions, enabling seamless experimentation and deployment.
  
-===== Libraries and Frameworks =====+==== Components of LLM Agents ====
  
-  * **LangChain:** A framework for developing applications powered by language models, providing tools for prompt chaining, memory management, and agent development. +=== Planning ===
-  * **LlamaIndex (GPT Index):** A toolkit for connecting LLMs with external data sources and knowledge bases. +
-  * **Hugging Face Transformers:** A library offering a wide range of pre-trained models and tools for natural language processing tasks, facilitating the development of LLM Agents. +
-  * **OpenAI API:** Provides access to advanced language models like GPT-4, enabling the integration of LLM capabilities into custom applications and agents. +
-  * **Microsoft Guidance:** A library for controlling LLM generation, allowing developers to specify desired behavior and constraints. +
-  * **AutoGPT and BabyAGI Implementations:** Open-source projects demonstrating autonomous agents built on top of LLMs, serving as references for building similar systems. +
-  * **Haystack:** An open-source framework for building search systems that combine LLMs with traditional search methods, useful for agents requiring information retrieval capabilities.+
  
------+🧩 Planning involves the strategic breakdown of complex tasks into manageable sub-tasks, devising algorithms, and sequencing actions based on logical reasoning and predicted outcomes.
  
-===== Applications of LLM Agents =====+== Task Decomposition ==
  
-  * **Autonomous Task Execution:** Performing tasks such as data analysis, content generation, scheduling, and automation of workflows without human intervention. +🌳 **[[chain_of_thought|Chain-of-Thought (CoT) Reasoning]]**   
-  * **Customer Support and Virtual Assistants:** Providing personalized assistance, answering queries, and engaging in natural language conversations with users. +🌲 **[[tree_of_thoughts|Tree of Thoughts]]**   
-  * **Research Assistance:** Assisting researchers by summarizing papers, generating hypotheses, or exploring literature. +⚙️ **[[llm_with_planning|LLM+P (LLM with Classical Planning)]]**
-  * **Education and Tutoring:** Offering personalized learning experiences, explanations, and educational content tailored to individual needs. +
-  * **Content Creation:** Generating articles, reports, creative writing, or marketing materials based on user input or autonomous exploration. +
-  * **Software Development Assistance:** Helping with code generation, debugging, documentation, and providing suggestions to developers. +
-  * **Data Retrieval and Processing:** Collecting, processing, and analyzing data from various sources to provide insights or support decision-making.+
  
------+== Self-Reflection ==
  
-===== Recent Developments =====+🔍 **[[react_framework|ReAct (Reasoning and Acting)]]**   
 +🔄 **[[reflexion_framework|Reflexion Framework]]**   
 +🪞 **[[chain_of_hindsight|Chain of Hindsight (CoH)]]**   
 +📉 **[[algorithm_distillation|Algorithm Distillation (AD)]]**
  
-The field of LLM Agents is rapidly evolving, with significant advancements including:+=== Memory ===
  
-  * **Enhanced Reasoning Abilities:** Improvements in chain-of-thought prompting and reasoning strategies have led to better problem-solving capabilities. +📦 Memory mechanisms allow agents to retain, retrieve, and utilize information over extended periods, significantly enhancing their ability to maintain context, learn from past experiences, and build upon accumulated knowledge.
-  * **Tool Use Integration:** LLMs are increasingly able to interact with external tools, expanding functionality beyond text-based outputs. +
-  * **Memory and Retrieval Augmented Models:** Incorporation of retrieval mechanisms allows agents to access relevant information from large datasets or knowledge bases as needed. +
-  * **Ethical and Safe AI Practices:** Ongoing efforts ensure that LLM Agents operate within ethical guidelinesavoiding biases and harmful outputs. +
-  * **Open-Source Agent Frameworks:** Projects like AutoGPT and BabyAGI accelerate experimentation and development in autonomous LLM Agents.+
  
------+== Hierarchical Memory Systems ==
  
-===== Getting Started =====+🕒 **[[sensory_memory|Sensory Memory]]**   
 +⏳ **[[short_term_memory|Short-Term Memory (Working Memory)]]**   
 +📜 **[[long_term_memory|Long-Term Memory (Persistent Memory)]]**   
 +    * 📂 **[[explicit_memory|Explicit/Declarative Memory]]**   
 +    * 🤫 **[[implicit_memory|Implicit/Procedural Memory]]**
  
-Embark on your journey with LLM Agents by exploring the following resources:+== Efficient Retrieval Mechanisms ==
  
-  * **[[Introduction to LLM Agents|Introduction to LLM Agents]]:** An overview of the architecture and components of LLM-powered agent applications. +🔎 **[[maximum_inner_product_search|Maximum Inner Product Search (MIPS)]]**   
-  * **[[LangChain Documentation|LangChain Documentation]]:** Guides and tutorials on using LangChain for developing LLM applications and agents. +    🧮 **[[locality_sensitive_hashing|Locality-Sensitive Hashing (LSH)]]**   
-  * **[[OpenAI API Reference|OpenAI API Reference]]:** Documentation and examples for integrating OpenAI's language models into your projects. +    📊 **[[approximate_nearest_neighbors|Approximate Nearest Neighbors (ANNOY)]]**   
-  * **[[AutoGPT GitHub Repository|AutoGPT GitHub Repository]]:** Explore the code and documentation of AutoGPT to understand autonomous agent implementations. +    🗺️ **[[hnsw_graphs|Hierarchical Navigable Small World (HNSW) Graphs]]**   
-  * **[[ReAct Paper|ReAct: Synergizing Reasoning and Acting in Language Models]]:** A research paper introducing the ReAct framework. +    🔍 **[[faiss|Facebook AI Similarity Search (FAISS)]]**   
-  * **[[Hugging Face Transformers|Hugging Face Transformers]]:** Learn how to use pre-trained models and fine-tune them for your specific needs.+    📈 **[[scann|Scalable Nearest Neighbors (ScaNN)]]**
  
------+=== Tool Use ===
  
-===== Join the Community =====+🔧 Tool use extends the agent's functionality by enabling interaction with external systems, APIs, and tools, allowing the agent to perform actions beyond its inherent capabilities and access up-to-date information.
  
-Stay updated with the latest trendsresearch, and developments in the field of LLM Agents by joining our community:+  * 🧰 **[[mrkl_systems|MRKL Systems (Modular ReasoningKnowledge, and Language)]]**   
 +  * 🛠️ **[[tool_augmented_language_models|Tool-Augmented Language Models (TALM)]]**   
 +  * 🤖 **[[toolformer|Toolformer]]**
  
-  * **Discussion Forums:** Engage with practitioners, share knowledge, and collaborate on projects. +== API Integration ==
-  * **Contribute to Open-Source Projects:** Participate in the development of tools and frameworks related to LLM Agents. +
-  * **Attend Workshops and Webinars:** Expand your knowledge through events focused on LLM technologies and applications.+
  
------+🔗 **[[openai_function_calling|OpenAI Function Calling and ChatGPT Plugins]]**   
 +🔗 **[[hugginggpt|HuggingGPT]]**   
 +🗂️ **[[api_bank_benchmark|API-Bank Benchmark]]**
  
-**Explore. Learn. Innovate.** Unlock the transformative potential of Large Language Model Agents and be at the forefront of the AI revolution.+==== Types of LLM Agents ==== 
 + 
 +🧠 **[[chain_of_thought_agents|Chain-of-Thought Agents]]**   
 +🔄 **[[react_agents|ReAct Agents]]**   
 +🤖 **[[autonomous_agents|Autonomous Agents]]**   
 +    * 🤖 **[[autogpt|AutoGPT]]**   
 +    * 🤖 **[[babyagi|BabyAGI]]**   
 +    * 🤖 **[[agentgpt|AgentGPT]]**   
 +📋 **[[plan_and_execute_agents|Plan-and-Execute Agents]]**   
 +💬 **[[conversational_agents|Conversational Agents]]**   
 +🔧 **[[tool_using_agents|Tool-Using Agents]]** 
 + 
 +==== Design Patterns for LLM Agents ==== 
 + 
 +🔗 **[[prompt_chaining|Prompt Chaining and Orchestration]]**   
 +📈 **[[rlhf|Reinforcement Learning from Human Feedback (RLHF)]]**   
 +🔄 **[[agent_loop|Agent Loop (Perception-Thought-Action Cycle)]]**   
 +🗂️ **[[context_window_management|Context Window Management]]**   
 +🔧 **[[tool_integration_patterns|Tool Integration Patterns]]**   
 +📂 **[[memory_augmentation_strategies|Memory Augmentation Strategies]]**   
 +🏗️ **[[modular_architectures|Modular and Layered Architectures]]** 
 + 
 +==== Libraries and Frameworks ==== 
 + 
 +Explore a range of tools and platforms for developing LLM agents: 
 + 
 +**Frameworks & Platforms** 
 + 
 +⚙️ **[[agent_protocol|Agent Protocol]]**   
 +🤖 **[[anthropic_context_protocol|Anthropic Model Context Protocol]]**   
 +💻 **[[chatdev|ChatDev]]**   
 +⚡ **[[bolt_new|Bolt.new]]**   
 +🔗 **[[flowise|Flowise]]**   
 +📋 **[[instructor_framework|Instructor]]**   
 +🔎 **[[llamaindex|LlamaIndex]]**   
 +🧠 **[[autogpt|AutoGPT]]**   
 +🤖 **[[babyagi|BabyAGI]]**   
 +🔗 **[[langroid|Langroid]]**   
 +📊 **[[microsoft_graphrag|Microsoft GraphRAG]]**   
 +🌟 **[[lite_llm|LiteLLM]]**
  
start.1732648655.txt.gz · Last modified: 2024/11/26 19:17 by brad