This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
start [2024/12/02 05:53] – brad | start [2024/12/13 18:26] (current) – brad | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ===== Large Language Model (LLM) Agents | + | ===== AgentWiki |
- | Welcome to the **LLM Agents Wiki**, a comprehensive resource for understanding and leveraging Large Language | + | Welcome to the **AgentWiki**, a comprehensive resource for understanding and leveraging Large Language |
+ | Catch up on the latest developments, | ||
==== Introduction ==== | ==== Introduction ==== | ||
- | Large Language Model (LLM) Agents are sophisticated AI systems that utilize large-scale neural language models to perform tasks autonomously. By comprehending natural language, reasoning through complex problems, and interacting with external tools and environments, | + | 🤖 Large Language Model (LLM) Agents are sophisticated AI systems that utilize large-scale neural language models to perform tasks autonomously. |
+ | By comprehending natural language, reasoning through complex problems, and interacting with external tools and environments, | ||
+ | They are capable of planning, executing, and adapting their actions based on given objectives and feedback from their environment. | ||
==== Agent System Overview ==== | ==== Agent System Overview ==== | ||
- | In an LLM-powered autonomous agent system, the LLM functions as the agent' | + | 🧠 In an LLM-powered autonomous agent system, the LLM functions as the agent' |
* **[[planning|Planning]]** | * **[[planning|Planning]]** | ||
- | * Task Decomposition | + | * Task Decomposition |
- | * Self-Reflection | + | * Self-Reflection |
* **[[memory|Memory]]** | * **[[memory|Memory]]** | ||
- | * Hierarchical Memory Systems | + | * Hierarchical Memory Systems |
- | * Efficient Retrieval Mechanisms | + | * Efficient Retrieval Mechanisms |
* **[[tool_use|Tool Use]]** | * **[[tool_use|Tool Use]]** | ||
- | * External API Integration | + | * External API Integration |
- | * Dynamic Tool Selection | + | * Dynamic Tool Selection |
+ | |||
+ | * **[[structured_outputs|Structured Outputs]]** | ||
+ | * Grammars | ||
+ | * Constrained Outputs | ||
- | These components enable the agent to: | + | 🚀 These components enable the agent to: |
- | * **Plan** complex tasks through decomposition and strategic reasoning. | + | * **Plan** complex tasks through decomposition and strategic reasoning. |
- | * **Remember** past interactions using advanced memory architectures. | + | * **Remember** past interactions using advanced memory architectures. |
* **Utilize Tools** to extend capabilities beyond text generation. | * **Utilize Tools** to extend capabilities beyond text generation. | ||
==== Key Features of LLM Agents ==== | ==== Key Features of LLM Agents ==== | ||
- | * **[[advanced_reasoning_planning|Advanced Reasoning and Planning]]**: | + | 🌀 **[[advanced_reasoning_planning|Advanced Reasoning and Planning]]**: |
- | * **[[tool_utilization|Tool Utilization and API Interaction]]**: | + | Employ sophisticated reasoning strategies to analyze complex tasks, devise multi-step plans, and sequence actions to achieve specific goals. |
- | * **[[hierarchical_memory|Hierarchical Memory and Context Management]]**: | + | |
- | * **[[natural_language_understanding|Natural Language Understanding and Generation]]**: | + | |
- | * **[[autonomy|Autonomy and Adaptive Behavior]]**: | + | |
- | ==== Components of LLM Agents ==== | + | 🔧 **[[tool_utilization|Tool Utilization and API Interaction]]**: |
+ | Interface with external tools, APIs, databases, and services to perform actions such as web searches, code execution, and data manipulation. | ||
- | === [[planning|Planning]] === | + | 📚 **[[hierarchical_memory|Hierarchical Memory and Context Management]]**: |
+ | Use multi-level memory architectures to maintain extensive context over interactions, | ||
- | Planning involves the strategic breakdown of complex tasks into manageable sub-tasks, devising algorithms, and sequencing actions based on logical reasoning | + | 💡 **[[natural_language_understanding|Natural Language Understanding and Generation]]**: |
+ | Interpret and generate human-like text, facilitating effective communication | ||
- | * **Task Decomposition** | + | 🔄 **[[autonomy|Autonomy and Adaptive Behavior]]**: |
- | * **[[chain_of_thought|Chain-of-Thought (CoT) Reasoning]]** | + | Operate independently, |
- | * **[[tree_of_thoughts|Tree of Thoughts]]** | + | |
- | * **[[llm_with_planning|LLM+P (LLM with Classical Planning)]]** | + | |
- | * **Self-Reflection** | + | ==== Workflows ==== |
- | * **[[react_framework|ReAct (Reasoning and Acting)]]** | + | |
- | * **[[reflexion_framework|Reflexion Framework]]** | + | |
- | * **[[chain_of_hindsight|Chain of Hindsight (CoH)]]** | + | |
- | * **[[algorithm_distillation|Algorithm Distillation (AD)]]** | + | |
- | === [[memory|Memory]] === | + | Workflows in LLM Agent systems streamline the design, implementation, |
- | Memory mechanisms allow agents to retain, retrieve, and utilize information over extended periods, significantly enhancing their ability to maintain context, learn from past experiences, | + | 🌊 **Key Workflow Tools** |
+ | * **[[flowise|Flowise]]**: | ||
+ | * **[[promptflow|PromptFlow]]**: | ||
- | * **Hierarchical Memory Systems** | + | These tools enhance the modularity and reusability of task definitions, |
- | * **[[sensory_memory|Sensory Memory]]** | + | |
- | * **[[short_term_memory|Short-Term Memory (Working Memory)]]** | + | |
- | * **[[long_term_memory|Long-Term Memory (Persistent Memory)]]** | + | |
- | * **[[explicit_memory|Explicit/ | + | |
- | * **[[implicit_memory|Implicit/ | + | |
- | * **Efficient Retrieval Mechanisms** | + | ==== Components of LLM Agents ==== |
- | * **[[maximum_inner_product_search|Maximum Inner Product Search (MIPS)]]** | + | |
- | * **[[locality_sensitive_hashing|Locality-Sensitive Hashing (LSH)]]** | + | |
- | * **[[approximate_nearest_neighbors|Approximate Nearest Neighbors (ANNOY)]]** | + | |
- | * **[[hnsw_graphs|Hierarchical Navigable Small World (HNSW) Graphs]]** | + | |
- | * **[[faiss|Facebook AI Similarity Search (FAISS)]]** | + | |
- | * **[[scann|Scalable Nearest Neighbors (ScaNN)]]** | + | |
- | === [[tool_use|Tool Use]] === | + | === Planning |
- | Tool use extends | + | 🧩 Planning involves |
- | * **[[mrkl_systems|MRKL Systems (Modular Reasoning, Knowledge, and Language)]]** | + | == Task Decomposition == |
- | * **[[tool_augmented_language_models|Tool-Augmented Language Models (TALM)]]** | + | |
- | * **[[toolformer|Toolformer]]** | + | |
- | * **API Integration** | + | |
- | * **[[openai_function_calling|OpenAI Function Calling and ChatGPT Plugins]]** | + | |
- | * **[[hugginggpt|HuggingGPT]]** | + | |
- | * **[[api_bank_benchmark|API-Bank Benchmark]]** | + | |
- | ==== Types of LLM Agents ==== | + | 🌳 **[[chain_of_thought|Chain-of-Thought (CoT) Reasoning]]** |
+ | 🌲 **[[tree_of_thoughts|Tree of Thoughts]]** | ||
+ | ⚙️ **[[llm_with_planning|LLM+P (LLM with Classical Planning)]]** | ||
- | * **[[chain_of_thought_agents|Chain-of-Thought Agents]]** | + | == Self-Reflection == |
- | * **[[react_agents|ReAct Agents]]** | + | |
- | * **[[autonomous_agents|Autonomous Agents]]** | + | |
- | * **[[autogpt|AutoGPT]]** | + | |
- | * **[[babyagi|BabyAGI]]** | + | |
- | * **[[agentgpt|AgentGPT]]** | + | |
- | * **[[plan_and_execute_agents|Plan-and-Execute Agents]]** | + | |
- | * **[[conversational_agents|Conversational Agents]]** | + | |
- | * **[[tool_using_agents|Tool-Using Agents]]** | + | |
- | ==== Design Patterns for LLM Agents ==== | + | 🔍 **[[react_framework|ReAct (Reasoning and Acting)]]** |
+ | 🔄 **[[reflexion_framework|Reflexion Framework]]** | ||
+ | 🪞 **[[chain_of_hindsight|Chain of Hindsight (CoH)]]** | ||
+ | 📉 **[[algorithm_distillation|Algorithm Distillation (AD)]]** | ||
- | * **[[prompt_chaining|Prompt Chaining and Orchestration]]** | + | === Memory |
- | * **[[rlhf|Reinforcement Learning from Human Feedback (RLHF)]]** | + | |
- | * **[[agent_loop|Agent Loop (Perception-Thought-Action Cycle)]]** | + | |
- | * **[[context_window_management|Context Window Management]]** | + | |
- | * **[[tool_integration_patterns|Tool Integration Patterns]]** | + | |
- | * **[[memory_augmentation_strategies|Memory | + | |
- | * **[[modular_architectures|Modular and Layered Architectures]]** | + | |
- | ==== Libraries | + | 📦 Memory mechanisms allow agents to retain, retrieve, |
- | Explore a range of tools and platforms for developing LLM agents: | + | == Hierarchical Memory Systems == |
- | **Frameworks & Platforms** | + | 🕒 **[[sensory_memory|Sensory Memory]]** |
+ | ⏳ **[[short_term_memory|Short-Term Memory (Working Memory)]]** | ||
+ | 📜 **[[long_term_memory|Long-Term Memory (Persistent Memory)]]** | ||
+ | * 📂 **[[explicit_memory|Explicit/ | ||
+ | * 🤫 **[[implicit_memory|Implicit/ | ||
- | * **[[agent_protocol|Agent Protocol]]** | + | == Efficient Retrieval Mechanisms == |
- | * **[[anthropic_context_protocol|Anthropic Model Context Protocol]]** | + | |
- | * **[[chatdev|ChatDev]]** | + | |
- | * **[[bolt_new|Bolt.new]]** | + | |
- | * **[[flowise|Flowise]]** | + | |
- | * **[[instructor_framework|Instructor]]** | + | |
- | * **[[llamaindex|LlamaIndex]]** | + | |
- | * **[[autogpt|AutoGPT]]** | + | |
- | * **[[babyagi|BabyAGI]]** | + | |
- | * **[[langroid|Langroid]]** | + | |
- | * **[[microsoft_graphrag|Microsoft GraphRAG]]** | + | |
- | * **[[lite_llm|LiteLLM]]** | + | |
- | * **[[langchain|LangChain]]** | + | |
- | * **[[semantic_kernel|Semantic Kernel]]** | + | |
- | * **[[hugging_face_transformers|Hugging Face Transformers]]** | + | |
- | **Deep Learning** | + | 🔎 **[[maximum_inner_product_search|Maximum Inner Product Search (MIPS)]]** |
+ | * 🧮 **[[locality_sensitive_hashing|Locality-Sensitive Hashing (LSH)]]** | ||
+ | * 📊 **[[approximate_nearest_neighbors|Approximate Nearest Neighbors (ANNOY)]]** | ||
+ | * 🗺️ **[[hnsw_graphs|Hierarchical Navigable Small World (HNSW) Graphs]]** | ||
+ | * 🔍 **[[faiss|Facebook AI Similarity Search (FAISS)]]** | ||
+ | * 📈 **[[scann|Scalable Nearest Neighbors (ScaNN)]]** | ||
- | * **[[keras|Keras]]** | + | === Tool Use === |
- | **Retrieval Augmented Generation (RAG)** | + | 🔧 Tool use extends the agent' |
- | * **[[haystack|Haystack]]** | + | * 🧰 **[[mrkl_systems|MRKL Systems (Modular Reasoning, Knowledge, and Language)]]** |
- | * **[[pymupdf_rag|PyMuPDF RAG]]** | + | * 🛠️ |
- | * **[[fid|Fusion-in-Decoder | + | * 🤖 **[[toolformer|Toolformer]]** |
- | * **[[openai_cookbook|OpenAI Cookbook]]** | + | |
- | **LLM Fine-tuning** | + | == API Integration == |
- | * **[[mlflow_tutorial|MLflow Tutorial]]** | + | 🔗 **[[openai_function_calling|OpenAI Function Calling and ChatGPT Plugins]]** |
- | | + | 🔗 **[[hugginggpt|HuggingGPT]]** |
- | * **[[allennlp|AllenNLP]]** | + | 🗂️ |
- | | + | |
- | ==== Applications | + | ==== Types of LLM Agents ==== |
- | | + | 🧠 **[[chain_of_thought_agents|Chain-of-Thought Agents]]** |
- | * **[[customer_support|Customer Support and Virtual Assistants]]** | + | 🔄 **[[react_agents|ReAct Agents]]** |
- | * **[[research_assistance|Research Assistance]]** | + | 🤖 **[[autonomous_agents|Autonomous Agents]]** |
- | * **[[educational_tools|Educational Tools and Tutoring Systems]]** | + | |
- | | + | |
- | * **[[software_development_support|Software Development Support]]** | + | |
- | | + | 📋 **[[plan_and_execute_agents|Plan-and-Execute Agents]]** |
+ | 💬 **[[conversational_agents|Conversational Agents]]** | ||
+ | 🔧 **[[tool_using_agents|Tool-Using Agents]]** | ||
- | ==== Case Studies | + | ==== Design Patterns for LLM Agents |
- | === [[scientific_discovery_agents|Scientific Discovery Agents]] === | + | 🔗 **[[prompt_chaining|Prompt Chaining and Orchestration]]** |
+ | 📈 **[[rlhf|Reinforcement Learning from Human Feedback (RLHF)]]** | ||
+ | 🔄 **[[agent_loop|Agent Loop (Perception-Thought-Action Cycle)]]** | ||
+ | 🗂️ **[[context_window_management|Context Window Management]]** | ||
+ | 🔧 **[[tool_integration_patterns|Tool Integration Patterns]]** | ||
+ | 📂 **[[memory_augmentation_strategies|Memory Augmentation Strategies]]** | ||
+ | 🏗️ **[[modular_architectures|Modular and Layered Architectures]]** | ||
- | * **[[chemcrow|ChemCrow]]** | + | ==== Libraries and Frameworks ==== |
- | * **[[autonomous_scientific_agents|Autonomous Scientific Research Agents]]** | + | |
- | === [[generative_agents_simulation|Generative Agents Simulation]] === | + | Explore a range of tools and platforms for developing LLM agents: |
- | | + | **Frameworks |
- | + | ||
- | === [[proof_of_concept_implementations|Proof-of-Concept Implementations]] === | + | |
- | + | ||
- | * **[[autogpt|AutoGPT]]** | + | |
- | * **[[gpt_engineer|GPT-Engineer]]** | + | |
- | + | ||
- | ==== Challenges ==== | + | |
- | + | ||
- | * **[[finite_context_length_limitations|Finite Context Length Limitations]]** | + | |
- | * **[[long_term_planning|Long-Term Planning and Complex Task Decomposition]]** | + | |
- | * **[[reliability_and_consistency|Reliability and Consistency of Natural Language Interfaces]]** | + | |
- | * **[[alignment_and_ethics|Alignment and Ethical Considerations]]** | + | |
- | * **[[scalability_and_performance|Scalability and Performance]]** | + | |
- | + | ||
- | ==== Recent Developments ==== | + | |
- | + | ||
- | The field of LLM Agents is rapidly evolving, with significant advancements including: | + | |
- | + | ||
- | * **[[enhanced_reasoning_algorithms|Enhanced Reasoning Algorithms]]** | + | |
- | * **[[integrated_tool_use_and_api_interaction|Integrated Tool Use and API Interaction]]** | + | |
- | * **[[advanced_memory_systems|Advanced Memory and Retrieval Systems]]** | + | |
- | * **[[ethical_frameworks_and_safety_protocols|Ethical | + | |
- | * **[[open_source_frameworks|Open-Source Frameworks and Collaborative | + | |
- | + | ||
- | ==== Getting Started ==== | + | |
- | + | ||
- | Embark on your journey with LLM Agents by exploring the following resources: | + | |
- | + | ||
- | * **[[introduction_to_llm_agents|Introduction to LLM Agents]]** | + | |
- | * **[[langchain_documentation|LangChain Documentation]]** | + | |
- | * **[[openai_api_reference|OpenAI API Reference]]** | + | |
- | * **[[autogpt_repository|AutoGPT GitHub Repository]]** | + | |
- | * **[[react_framework|ReAct Framework]]** | + | |
- | * **[[hugging_face_transformers_docs|Hugging Face Transformers Documentation]]** | + | |
- | + | ||
- | Explore, learn, and innovate to unlock the transformative potential of Large Language Model Agents and be at the forefront of the AI revolution. | + | |
- | + | ||
- | ==== Tags ==== | + | |
- | + | ||
- | {{tag> | + | |
+ | ⚙️ **[[agent_protocol|Agent Protocol]]** | ||
+ | 🤖 **[[anthropic_context_protocol|Anthropic Model Context Protocol]]** | ||
+ | 💻 **[[chatdev|ChatDev]]** | ||
+ | ⚡ **[[bolt_new|Bolt.new]]** | ||
+ | 🔗 **[[flowise|Flowise]]** | ||
+ | 📋 **[[instructor_framework|Instructor]]** | ||
+ | 🔎 **[[llamaindex|LlamaIndex]]** | ||
+ | 🧠 **[[autogpt|AutoGPT]]** | ||
+ | 🤖 **[[babyagi|BabyAGI]]** | ||
+ | 🔗 **[[langroid|Langroid]]** | ||
+ | 📊 **[[microsoft_graphrag|Microsoft GraphRAG]]** | ||
+ | 🌟 **[[lite_llm|LiteLLM]]** | ||