User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
start [2024/12/02 05:53] bradstart [2024/12/13 18:26] (current) brad
Line 1: Line 1:
-===== Large Language Model (LLM) Agents =====+===== AgentWiki =====
  
-Welcome to the **LLM Agents Wiki**, a comprehensive resource for understanding and leveraging Large Language Model Agents in advanced applications. Delve into the latest developments, explore various architectures and design patterns, and discover the libraries and tools that empower these intelligent systems to perform autonomously across diverse domains.+Welcome to the **AgentWiki**, a comprehensive resource for understanding and leveraging Large Language Models (LLMs) for agent applications.  
 +Catch up on the latest developments, explore various architectures and design patterns, and discover the libraries and tools that empower these intelligent systems to perform autonomously across diverse domains.
  
 ==== Introduction ==== ==== Introduction ====
  
-Large Language Model (LLM) Agents are sophisticated AI systems that utilize large-scale neural language models to perform tasks autonomously. By comprehending natural language, reasoning through complex problems, and interacting with external tools and environments, LLM Agents represent a significant advancement in artificial intelligence. They are capable of planning, executing, and adapting their actions based on given objectives and feedback from their environment.+🤖 Large Language Model (LLM) Agents are sophisticated AI systems that utilize large-scale neural language models to perform tasks autonomously.   
 +By comprehending natural language, reasoning through complex problems, and interacting with external tools and environments, LLM Agents represent a significant advancement in artificial intelligence.   
 +They are capable of planning, executing, and adapting their actions based on given objectives and feedback from their environment.
  
 ==== Agent System Overview ==== ==== Agent System Overview ====
  
-In an LLM-powered autonomous agent system, the LLM functions as the agent's central processing unit, complemented by several key components:+🧠 In an LLM-powered autonomous agent system, the LLM functions as the agent's central processing unit, complemented by several key components:
  
   * **[[planning|Planning]]**   * **[[planning|Planning]]**
-    * Task Decomposition +    * Task Decomposition   
-    * Self-Reflection+    * Self-Reflection   
   * **[[memory|Memory]]**   * **[[memory|Memory]]**
-    * Hierarchical Memory Systems +    * Hierarchical Memory Systems   
-    * Efficient Retrieval Mechanisms+    * Efficient Retrieval Mechanisms   
   * **[[tool_use|Tool Use]]**   * **[[tool_use|Tool Use]]**
-    * External API Integration +    * External API Integration   
-    * Dynamic Tool Selection+    * Dynamic Tool Selection   
 + 
 +  * **[[structured_outputs|Structured Outputs]]** 
 +    * Grammars   
 +    * Constrained Outputs  
  
-These components enable the agent to:+🚀 These components enable the agent to:  
  
-  * **Plan** complex tasks through decomposition and strategic reasoning. +  * **Plan** complex tasks through decomposition and strategic reasoning.   
-  * **Remember** past interactions using advanced memory architectures.+  * **Remember** past interactions using advanced memory architectures.  
   * **Utilize Tools** to extend capabilities beyond text generation.   * **Utilize Tools** to extend capabilities beyond text generation.
  
 ==== Key Features of LLM Agents ==== ==== Key Features of LLM Agents ====
  
-  * **[[advanced_reasoning_planning|Advanced Reasoning and Planning]]**: Employ sophisticated reasoning strategies to analyze complex tasks, devise multi-step plans, and sequence actions to achieve specific goals+🌀 **[[advanced_reasoning_planning|Advanced Reasoning and Planning]]**:   
-  * **[[tool_utilization|Tool Utilization and API Interaction]]**: Interface with external tools, APIs, databases, and services to perform actions such as web searches, code execution, and data manipulation. +Employ sophisticated reasoning strategies to analyze complex tasks, devise multi-step plans, and sequence actions to achieve specific goals.
-  * **[[hierarchical_memory|Hierarchical Memory and Context Management]]**: Use multi-level memory architectures to maintain extensive context over interactions, enabling long-term coherence and adaptability. +
-  * **[[natural_language_understanding|Natural Language Understanding and Generation]]**: Interpret and generate human-like text, facilitating effective communication and instruction following. +
-  * **[[autonomy|Autonomy and Adaptive Behavior]]**: Operate independently, making informed decisions and adapting to new information or changes in their environment through iterative learning processes.+
  
-==== Components of LLM Agents ====+🔧 **[[tool_utilization|Tool Utilization and API Interaction]]**:   
 +Interface with external tools, APIs, databases, and services to perform actions such as web searches, code execution, and data manipulation.
  
-=== [[planning|Planning]] ===+📚 **[[hierarchical_memory|Hierarchical Memory and Context Management]]**:   
 +Use multi-level memory architectures to maintain extensive context over interactions, enabling long-term coherence and adaptability.
  
-Planning involves the strategic breakdown of complex tasks into manageable sub-tasksdevising algorithms, and sequencing actions based on logical reasoning and predicted outcomes.+💡 **[[natural_language_understanding|Natural Language Understanding and Generation]]**:   
 +Interpret and generate human-like textfacilitating effective communication and instruction following.
  
-  * **Task Decomposition** +🔄 **[[autonomy|Autonomy and Adaptive Behavior]]**:   
-    * **[[chain_of_thought|Chain-of-Thought (CoT) Reasoning]]** +Operate independently, making informed decisions and adapting to new information or changes in their environment through iterative learning processes.
-    * **[[tree_of_thoughts|Tree of Thoughts]]** +
-    * **[[llm_with_planning|LLM+P (LLM with Classical Planning)]]**+
  
-  * **Self-Reflection** +==== Workflows ====
-    * **[[react_framework|ReAct (Reasoning and Acting)]]** +
-    * **[[reflexion_framework|Reflexion Framework]]** +
-    * **[[chain_of_hindsight|Chain of Hindsight (CoH)]]** +
-    * **[[algorithm_distillation|Algorithm Distillation (AD)]]**+
  
-=== [[memory|Memory]] ===+Workflows in LLM Agent systems streamline the design, implementation, and orchestration of complex tasks by structuring multi-step processes for optimal performance.  
  
-Memory mechanisms allow agents to retain, retrieve, and utilize information over extended periods, significantly enhancing their ability to maintain context, learn from past experiences, and build upon accumulated knowledge.+🌊 **Key Workflow Tools**   
 +  * **[[flowise|Flowise]]**: A visual programming interface for designing agent workflows.   
 +  * **[[promptflow|PromptFlow]]**: A framework for defining and testing prompt sequences in a systematic manner 
  
-  * **Hierarchical Memory Systems** +These tools enhance the modularity and reusability of task definitions, enabling seamless experimentation and deployment.
-    * **[[sensory_memory|Sensory Memory]]** +
-    * **[[short_term_memory|Short-Term Memory (Working Memory)]]** +
-    * **[[long_term_memory|Long-Term Memory (Persistent Memory)]]** +
-      * **[[explicit_memory|Explicit/Declarative Memory]]** +
-      * **[[implicit_memory|Implicit/Procedural Memory]]**+
  
-  * **Efficient Retrieval Mechanisms** +==== Components of LLM Agents ====
-    * **[[maximum_inner_product_search|Maximum Inner Product Search (MIPS)]]** +
-      * **[[locality_sensitive_hashing|Locality-Sensitive Hashing (LSH)]]** +
-      * **[[approximate_nearest_neighbors|Approximate Nearest Neighbors (ANNOY)]]** +
-      * **[[hnsw_graphs|Hierarchical Navigable Small World (HNSW) Graphs]]** +
-      * **[[faiss|Facebook AI Similarity Search (FAISS)]]** +
-      * **[[scann|Scalable Nearest Neighbors (ScaNN)]]**+
  
-=== [[tool_use|Tool Use]] ===+=== Planning ===
  
-Tool use extends the agent's functionality by enabling interaction with external systemsAPIs, and tools, allowing the agent to perform actions beyond its inherent capabilities and access up-to-date information.+🧩 Planning involves the strategic breakdown of complex tasks into manageable sub-tasksdevising algorithms, and sequencing actions based on logical reasoning and predicted outcomes.
  
-  * **[[mrkl_systems|MRKL Systems (Modular Reasoning, Knowledge, and Language)]]** +== Task Decomposition ==
-  * **[[tool_augmented_language_models|Tool-Augmented Language Models (TALM)]]** +
-  * **[[toolformer|Toolformer]]** +
-  * **API Integration** +
-    * **[[openai_function_calling|OpenAI Function Calling and ChatGPT Plugins]]** +
-    * **[[hugginggpt|HuggingGPT]]** +
-    * **[[api_bank_benchmark|API-Bank Benchmark]]**+
  
-==== Types of LLM Agents ====+🌳 **[[chain_of_thought|Chain-of-Thought (CoT) Reasoning]]**   
 +🌲 **[[tree_of_thoughts|Tree of Thoughts]]**   
 +⚙️ **[[llm_with_planning|LLM+P (LLM with Classical Planning)]]**
  
-  * **[[chain_of_thought_agents|Chain-of-Thought Agents]]** +== Self-Reflection ==
-  * **[[react_agents|ReAct Agents]]** +
-  * **[[autonomous_agents|Autonomous Agents]]** +
-    * **[[autogpt|AutoGPT]]** +
-    * **[[babyagi|BabyAGI]]** +
-    * **[[agentgpt|AgentGPT]]** +
-  * **[[plan_and_execute_agents|Plan-and-Execute Agents]]** +
-  * **[[conversational_agents|Conversational Agents]]** +
-  * **[[tool_using_agents|Tool-Using Agents]]**+
  
-==== Design Patterns for LLM Agents ====+🔍 **[[react_framework|ReAct (Reasoning and Acting)]]**   
 +🔄 **[[reflexion_framework|Reflexion Framework]]**   
 +🪞 **[[chain_of_hindsight|Chain of Hindsight (CoH)]]**   
 +📉 **[[algorithm_distillation|Algorithm Distillation (AD)]]**
  
-  * **[[prompt_chaining|Prompt Chaining and Orchestration]]** +=== Memory ===
-  * **[[rlhf|Reinforcement Learning from Human Feedback (RLHF)]]** +
-  * **[[agent_loop|Agent Loop (Perception-Thought-Action Cycle)]]** +
-  * **[[context_window_management|Context Window Management]]** +
-  * **[[tool_integration_patterns|Tool Integration Patterns]]** +
-  * **[[memory_augmentation_strategies|Memory Augmentation Strategies]]** +
-  * **[[modular_architectures|Modular and Layered Architectures]]**+
  
-==== Libraries and Frameworks ====+📦 Memory mechanisms allow agents to retain, retrieve, and utilize information over extended periods, significantly enhancing their ability to maintain context, learn from past experiences, and build upon accumulated knowledge.
  
-Explore a range of tools and platforms for developing LLM agents:+== Hierarchical Memory Systems ==
  
-**Frameworks & Platforms**+🕒 **[[sensory_memory|Sensory Memory]]**   
 +⏳ **[[short_term_memory|Short-Term Memory (Working Memory)]]**   
 +📜 **[[long_term_memory|Long-Term Memory (Persistent Memory)]]**   
 +    * 📂 **[[explicit_memory|Explicit/Declarative Memory]]**   
 +    * 🤫 **[[implicit_memory|Implicit/Procedural Memory]]**
  
-  * **[[agent_protocol|Agent Protocol]]** +== Efficient Retrieval Mechanisms ==
-  * **[[anthropic_context_protocol|Anthropic Model Context Protocol]]** +
-  * **[[chatdev|ChatDev]]** +
-  * **[[bolt_new|Bolt.new]]** +
-  * **[[flowise|Flowise]]** +
-  * **[[instructor_framework|Instructor]]** +
-  * **[[llamaindex|LlamaIndex]]** +
-  * **[[autogpt|AutoGPT]]** +
-  * **[[babyagi|BabyAGI]]** +
-  * **[[langroid|Langroid]]** +
-  * **[[microsoft_graphrag|Microsoft GraphRAG]]** +
-  * **[[lite_llm|LiteLLM]]** +
-  * **[[langchain|LangChain]]** +
-  * **[[semantic_kernel|Semantic Kernel]]** +
-  * **[[hugging_face_transformers|Hugging Face Transformers]]**+
  
-**Deep Learning**+🔎 **[[maximum_inner_product_search|Maximum Inner Product Search (MIPS)]]**   
 +    * 🧮 **[[locality_sensitive_hashing|Locality-Sensitive Hashing (LSH)]]**   
 +    * 📊 **[[approximate_nearest_neighbors|Approximate Nearest Neighbors (ANNOY)]]**   
 +    * 🗺️ **[[hnsw_graphs|Hierarchical Navigable Small World (HNSW) Graphs]]**   
 +    * 🔍 **[[faiss|Facebook AI Similarity Search (FAISS)]]**   
 +    * 📈 **[[scann|Scalable Nearest Neighbors (ScaNN)]]**
  
-  * **[[keras|Keras]]**+=== Tool Use ===
  
-**Retrieval Augmented Generation (RAG)**+🔧 Tool use extends the agent's functionality by enabling interaction with external systems, APIs, and tools, allowing the agent to perform actions beyond its inherent capabilities and access up-to-date information.
  
-  * **[[haystack|Haystack]]** +  * 🧰 **[[mrkl_systems|MRKL Systems (Modular Reasoning, Knowledge, and Language)]]**   
-  * **[[pymupdf_rag|PyMuPDF RAG]]** +  * 🛠️ **[[tool_augmented_language_models|Tool-Augmented Language Models (TALM)]]**   
-  * **[[fid|Fusion-in-Decoder (FiD)]]** +  * 🤖 **[[toolformer|Toolformer]]**
-  * **[[openai_cookbook|OpenAI Cookbook]]**+
  
-**LLM Fine-tuning**+== API Integration ==
  
-  * **[[mlflow_tutorial|MLflow Tutorial]]** +🔗 **[[openai_function_calling|OpenAI Function Calling and ChatGPT Plugins]]**   
-  **[[huggingface_kermitt2|Hugging Face Kermitt2]]** +🔗 **[[hugginggpt|HuggingGPT]]**   
-  * **[[allennlp|AllenNLP]]** +🗂️ **[[api_bank_benchmark|API-Bank Benchmark]]**
-  **[[pytorch_lightning|PyTorch Lightning]]**+
  
-==== Applications of LLM Agents ====+==== Types of LLM Agents ====
  
-  * **[[autonomous_task_execution|Autonomous Task Execution]]** +🧠 **[[chain_of_thought_agents|Chain-of-Thought Agents]]**   
-  * **[[customer_support|Customer Support and Virtual Assistants]]** +🔄 **[[react_agents|ReAct Agents]]**   
-  * **[[research_assistance|Research Assistance]]** +🤖 **[[autonomous_agents|Autonomous Agents]]**   
-  * **[[educational_tools|Educational Tools and Tutoring Systems]]** +    🤖 **[[autogpt|AutoGPT]]**   
-  **[[content_creation|Content Creation and Curation]]** +    🤖 **[[babyagi|BabyAGI]]**   
-  **[[software_development_support|Software Development Support]]** +    🤖 **[[agentgpt|AgentGPT]]**   
-  **[[data_retrieval_and_knowledge_management|Data Retrieval and Knowledge Management]]**+📋 **[[plan_and_execute_agents|Plan-and-Execute Agents]]**   
 +💬 **[[conversational_agents|Conversational Agents]]**   
 +🔧 **[[tool_using_agents|Tool-Using Agents]]**
  
-==== Case Studies ====+==== Design Patterns for LLM Agents ====
  
-=== [[scientific_discovery_agents|Scientific Discovery Agents]] ===+🔗 **[[prompt_chaining|Prompt Chaining and Orchestration]]**   
 +📈 **[[rlhf|Reinforcement Learning from Human Feedback (RLHF)]]**   
 +🔄 **[[agent_loop|Agent Loop (Perception-Thought-Action Cycle)]]**   
 +🗂️ **[[context_window_management|Context Window Management]]**   
 +🔧 **[[tool_integration_patterns|Tool Integration Patterns]]**   
 +📂 **[[memory_augmentation_strategies|Memory Augmentation Strategies]]**   
 +🏗️ **[[modular_architectures|Modular and Layered Architectures]]**
  
-  * **[[chemcrow|ChemCrow]]** +==== Libraries and Frameworks ====
-  * **[[autonomous_scientific_agents|Autonomous Scientific Research Agents]]**+
  
-=== [[generative_agents_simulation|Generative Agents Simulation]] ===+Explore a range of tools and platforms for developing LLM agents:
  
-  * **[[generative_agents|Generative Agents]]** +**Frameworks Platforms**
- +
-=== [[proof_of_concept_implementations|Proof-of-Concept Implementations]] === +
- +
-  * **[[autogpt|AutoGPT]]** +
-  * **[[gpt_engineer|GPT-Engineer]]** +
- +
-==== Challenges ==== +
- +
-  * **[[finite_context_length_limitations|Finite Context Length Limitations]]** +
-  * **[[long_term_planning|Long-Term Planning and Complex Task Decomposition]]** +
-  * **[[reliability_and_consistency|Reliability and Consistency of Natural Language Interfaces]]** +
-  * **[[alignment_and_ethics|Alignment and Ethical Considerations]]** +
-  * **[[scalability_and_performance|Scalability and Performance]]** +
- +
-==== Recent Developments ==== +
- +
-The field of LLM Agents is rapidly evolving, with significant advancements including: +
- +
-  * **[[enhanced_reasoning_algorithms|Enhanced Reasoning Algorithms]]** +
-  * **[[integrated_tool_use_and_api_interaction|Integrated Tool Use and API Interaction]]** +
-  * **[[advanced_memory_systems|Advanced Memory and Retrieval Systems]]** +
-  * **[[ethical_frameworks_and_safety_protocols|Ethical Frameworks and Safety Protocols]]** +
-  * **[[open_source_frameworks|Open-Source Frameworks and Collaborative Platforms]]** +
- +
-==== Getting Started ==== +
- +
-Embark on your journey with LLM Agents by exploring the following resources: +
- +
-  * **[[introduction_to_llm_agents|Introduction to LLM Agents]]** +
-  * **[[langchain_documentation|LangChain Documentation]]** +
-  * **[[openai_api_reference|OpenAI API Reference]]** +
-  * **[[autogpt_repository|AutoGPT GitHub Repository]]** +
-  * **[[react_framework|ReAct Framework]]** +
-  * **[[hugging_face_transformers_docs|Hugging Face Transformers Documentation]]** +
- +
-Explore, learn, and innovate to unlock the transformative potential of Large Language Model Agents and be at the forefront of the AI revolution. +
- +
-==== Tags ==== +
- +
-{{tag>nlp language-model agent artificial-intelligence machine-learning planning memory tools}}+
  
 +⚙️ **[[agent_protocol|Agent Protocol]]**  
 +🤖 **[[anthropic_context_protocol|Anthropic Model Context Protocol]]**  
 +💻 **[[chatdev|ChatDev]]**  
 +⚡ **[[bolt_new|Bolt.new]]**  
 +🔗 **[[flowise|Flowise]]**  
 +📋 **[[instructor_framework|Instructor]]**  
 +🔎 **[[llamaindex|LlamaIndex]]**  
 +🧠 **[[autogpt|AutoGPT]]**  
 +🤖 **[[babyagi|BabyAGI]]**  
 +🔗 **[[langroid|Langroid]]**  
 +📊 **[[microsoft_graphrag|Microsoft GraphRAG]]**  
 +🌟 **[[lite_llm|LiteLLM]]**
  
start.1733118824.txt.gz · Last modified: 2024/12/02 05:53 by brad